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Abstract

Random effect models have become a mainstream statistical technique over the last
decades, and the same can be said for response transformation models such as the Box-Cox
transformation. The latter ensures that the assumptions of normality and of homoscedas-
ticity of the response distribution are fulfilled, which are essential conditions for the use of
a linear model or a linear mixed model. However, methodology for response transforma-
tion and simultaneous inclusion of random effects has been developed and implemented
only scarcely, and is so far restricted to Gaussian random effects. In this vignette, we in-
troduce a new R package, boxcoxmix, that aims to ensure the validity of a normal response
distribution using the Box-Cox power transformation in the presence of random effects,
thereby not requiring parametric assumptions on their distribution. This is achieved by
extending the “Nonparametric Maximum Likelihood" towards a “Nonparametric Profile
Maximum Likelihood" technique. The implemented techniques allow to deal with overdis-
persion as well as two–level data scenarios.

Keywords: Box–Cox transformation, mixed model, nonparametric maximum likelihood, EM
algorithm.

1. Introduction

In regression analysis, the data needs to achieve normality and homoscedasticity of the re-
sponse distribution in order to enable access to linear model theory and associated inferential
tools such as confidence intervals and hypothesis tests. This often requires transforming the
response variable. Box and Cox (1964) proposed a parametric power transformation tech-
nique for transforming the response in univariate linear models. This transformation has been
intensively studied by many researchers. Sakia (1992) briefly reviewed the work relating to
this transformation. Solomon (1985) studied the application of the Box-Cox transformations
to simple variance component models. The extension of the transformation to the linear
mixed effects model was proposed by Gurka, Edwards, Muller, and Kupper (2006), in the
case of a Gaussian random effect distribution. An obvious concern of assuming a normal
random effect distribution is whether there are any harmful effects of misspecification. Bock
and Aitkin (1981) showed that there is no need to make an assumption about the distribu-
tion of the random effects and it can be estimated as a discrete mixing distribution. Aitkin
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(1996), Heckman and Singer (1984) and Davies (1987) showed that the parameter estimation
is sensitive to the choice of the mixing distribution specification. The problem of estimating
the mixing distribution using a specific parametric form (e.g. normal) can be overcome by
the use of non-parametric maximum likelihood (NPML) estimation; the NPML estimate of
the mixing distribution is known to be a discrete distribution involving a finite number of
mass-points and corresponding masses (Laird 1978; Lindsay et al. 1983). An Expectation-
Maximization (EM) algorithm is used for fitting the finite mixture distribution, each iteration
of this algorithm is based on two steps: the expectation step (E-step) and the maximization
step (M-step); see Aitkin (1999); Aitkin, Francis, Hinde, and Darnell (2009) and Einbeck,
Hinde, and Darnell (2007) for details. The maximum likelihood (ML) estimate via the EM
algorithm is a preferable approach due to its generality and simplicity; when the underlying
complete data come from an exponential family whose ML estimates are easily computed,
then each maximization step of an EM algorithm is likewise easily computed (Dempster,
Laird, and Rubin 1977). For both overdispersed and variance component models, the EM
algorithm for NPML estimation of the mixing distribution was regarded as “very stable and
converged in every case” (Aitkin 1999).

A particular appealing aspect of the NPML approach is that the posterior probability that
a certain unit belongs to a certain cluster corresponds to the weights in the final iteration of
the EM algorithm (Sofroniou, Einbeck, and Hinde 2006). Another benefit of this approach
is that increasing the number of mass points requires little computational effort and that the
mass–points are not restricted to lie on a grid (Aitkin 1996). Aitkin concluded that “the
simplicity and generality of the non–parametric model and the EM algorithm for full NPML
estimation in overdispersed exponential family models make them a powerful modelling tool”.
The ability of the EM algorithm to locate the global maximum in fewer iterations can be
affected by the choice of initial values; several methods for choosing initial values for the
EM algorithm in the case of finite mixtures are discussed by Karlis and Xekalaki (2003).
A grid search for setting the initial values was suggested by Laird (1978). Hou, Mahnken,
Gajewski, and Dunton (2011) found limited difference from subsequent test of structural
effects if the factors with structural effects were omitted during the estimating process for
the Box-Cox power transformation parameter. They noted that the Box-Cox transformation
works better only if the cluster sizes are very large; and it is necessary to run a grid search of
the transformation in order to determine the parameter estimate that maximizes the residual
(or profile) likelihood during the optimization process both under the linear and the mixed
model settings. Nawata (1994) proposes a scanning Maximum likelihood method. Basically
one conducts the entire methodology on a grid of fixed values of the transformation parameter
λ and then optimizes over this grid. Nawata et al. (2013) used this method to calculate the
maximum likelihood estimator of the Box-Cox transformation model. Gurka et al. (2006)
noted that it is necessary to discuss how the estimation of λ affects inference about the other
model parameters when one extends the Box-Cox transformation to the linear mixed model.

This vignette introduces (an implementation of) a transformation approach by extending the
Box-Cox transformation to overdispersion and two–level variance component models. It aims
to ensure the validity of a normal response distribution using the Box–Cox power transfor-
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mation in the presence of random effects, thereby not requiring parametric assumptions on
their distribution. This is achieved by extending the “Nonparametric Maximum Likelihood”
towards a “Nonparametric Profile Maximum Likelihood (NPPML)” technique. To the best of
our knowledge, the approach turns out to be the only one of its kind that has implemented the
Box-Cox power transformation of the linear mixed effects model with an unspecified random
effect distribution.
For an existing implementation of the Box-Cox transformation for the univariate linear model
in R, we mention the boxcox() function in the MASS package (Venables and Ripley 2002).
Essentially, boxcox() calculates and plots the profile log-likelihood for the univariate linear
model against a set of λ values, in order to locate the transformation parameter under which
the log-likelihood is maximized (yielding, after transformation, data that follow a normal
distribution more closely than the untransformed data). In turn, the NPML methodology
is implemented in the npmlreg package (Aitkin et al. 2009; Einbeck, Darnell, and Hinde
2014), which provides functions alldist() and allvc() for simple overdispersion models
and variance component models, respectively. In this article, we introduce the boxcoxmix
package which can be considered as a comnination of the Box–Cox and NPML concepts and
which implements transformation models for random effect and variance component models
using the NPPML technique. The package is available from the Comprehensive R Archive
Network (CRAN) at https://cran.r-project.org/package=boxcoxmix.
The remainder of the article is organized as follows. Section 2 begins by providing a general
introduction to the Box-Cox transformation for the linear model, as well as the theory and
methodology underlying random effect models with unspecified random effect distribution. It
proceeds with using the “Nonparametric Profile Maximum Likelihood” technique to combine
these two methods. It also explains the basic usages of boxcoxmix’s main functions with a
real data example. In Section 3, the Box–Cox transformation is extended to the two-level
variance component model, along with some examples. The article concludes with a discussion
in Section 4.

2. Box-Cox transformation in random effect models

2.1. Box-Cox transformation

The Box–Cox transformation (Box and Cox 1964) has been widely used in applied data
analysis. The objective of the transformation is to select an appropriate parameter λ which
is then used to transform data such that they follow a normal distribution more closely than
the untransformed data. The transformation of the responses yi, i = 1, . . . , n, takes the form:

y
(λ)
i =

{
yλ

i −1
λ (λ ̸= 0),

log yi (λ = 0),
(1)

where the restriction yi > 0 applies. The response variable transformed by the Box–Cox
transformation is assumed to be linearly related to its covariates and the errors normally

https://cran.r-project.org/package=boxcoxmix
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distributed with constant variance.

2.2. Random effects

In the linear model, it is assumed that a set of explanatory variables xi, i = 1, . . . , n, and
a response variable yi are linearly related such that yi = xT

i β + ϵi where ϵi is an error term
which is usually assumed to be Gaussian and homescedastic. If the population from which the
data are sampled consists of heterogeneous, unknown subpopulations, then the linear model
described above will not fit well. In such cases, the presence of further unknown variability
can be accommodated by adding a random effect zi with density g(z) to the linear predictor,

yi = xT
i β + zi + ϵi. (2)

The responses yi are independently distributed with mean function E(yi|zi) = xT
i β + zi,

conditionally on the random effect zi. Let ϕ(y; ·, ·) denote the univariate Gaussian probability
density function, with mean and variance specified in the remaining two function arguments.
The conditional probability density function of yi given zi is given by

f(yi|zi) = ϕ(yi; xT
i β + zi, σ2) = 1√

2πσ2
exp

[
− 1

2σ2 (yi − xT
i β − zi)2

]
. (3)

Note that under the presence of a random effect, the parametric intercept term can be omitted
from xT

i β. Under the NPML estimation approach, the distribution of the random effect will be
approximated by a discrete distribution at mass points z1, . . . , zK , which can be considered
as intercepts for the different unknown subgroups. This will be explained in detail in the
following subsection, under inclusion of the Box–Cox transformation.

2.3. Extending the Box-Cox transformation to random effect models

In this section, the Box-Cox transformation is extended to the random effects model. In this
case, it is assumed that there is a value of λ for which

y
(λ)
i |zi ∼ N(xT

i β + zi, σ2), (4)

where zi is a random effect with an unspecified density g(zi). Taking account of the Jacobian of
the transformation from y to y(λ), the conditional probability density function of yi given zi is

f(yi|zi) = yλ−1
i√
2πσ2

exp
[
− 1

2σ2 (y(λ)
i − xT

i β − zi)2
]

, (5)

hence, the likelihood in relation to the original observations is

L(λ, β, σ2, g) =
n∏

i=1

∫
f(yi|zi)g(zi)dzi. (6)
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Under the non-parametric maximum likelihood (NPML) approach, the integral over the (un-
specified) mixing distribution g(z) is approximated by a discrete distribution on a finite num-
ber K of mass-points zk, with masses πk (Aitkin et al. 2009). The approximated likelihood
is then

L(λ, β, σ2, z1, ...., zk, π1, ....., πk) =
n∏

i=1

K∑
k=1

πkfik (7)

where fik = f(yi|zk). Defining indicators

Gik =
{

1 if observation yi comes from cluster k,
0 otherwise, (8)

the complete likelihood would be

L∗ =
n∏

i=1

K∏
k=1

(πkfik)Gik , (9)

so that the complete log-likelihood takes the shape

ℓ∗ = log L∗ =
n∑

i=1

K∑
k=1

[Gik log πk + Gik log fik] . (10)

If K = 1, the log-likelihood would be the usual log-likelihood of the Box–Cox model without
random effects.
We now apply the expectation-maximization (EM) approach to find the maximum likelihood
estimate (MLE) of the model parameters. Given some starting values β0, σ0, z0

k, and π0
k

(discussed in a separate subsection below), set β̂ = β0, σ̂ = σ0, ẑk = z0
k, π̂k = π0

k, k =
1, 2, . . . , K, and iterate between
E-step: Estimate Gik by its expectation

wik = π̂kfik∑
ℓ π̂ℓfiℓ

(11)

which is the posterior probability that observation yi comes from cluster k. Note that fik

depends via equation (5) implicitly on the current values of ẑk, β̂ and σ̂2.

M-step: The estimators β̂, σ̂2, ẑk and π̂k can be obtained using the current wik, via the
following four equations which were obtained through manual derivation of the NPML esti-
mators for fixed K:

β̂ =
(

n∑
i=1

xix
T
i

)−1 n∑
i=1

xi

(
y

(λ)
i −

K∑
k=1

wikẑk

)
, (12)

σ̂2 =
n∑

i=1

K∑
k=1

wik(y(λ)
i − xT β̂ − ẑk)2

n
, (13)
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ẑk =
∑n

i=1 wik(y(λ)
i − xT

i β̂)∑n
i=1 wik

, (14)

π̂k =
∑n

i=1 wik

n
. (15)

We see from this that π̂k is the average posterior probability for component k.
Replacing the results into Equation (7) we get the non-parametric profile likelihood function
LP (λ), or its logarithmic version

ℓP (λ) = log
( K∑

k=1
π̂

(λ)
k f̂

(λ)
ik

)
. (16)

The non-parametric profile maximum likelihood (NPPML) estimator is therefore given by

λ̂ = arg max
λ

ℓP (λ). (17)

In practice, the EM–algorithm needs to be stopped after a certain number of iterations when
it has reached its point of convergence. Polańska (2003) defined this convergence criterion
as the absolute change in the successive log-likelihood function values being less than an
arbitrary parameter such as δ = 0.0001.
In package boxcoxmix, the main function for fitting random effect models with response
transformations is optim.boxcox(), which performs a grid search of (16) over the parameter
λ and then optimizes over this grid, in order to calculate the maximum likelihood estimator λ̂

of the transformation. It produces a plot of the non-parametric profile likelihood function that
summarises information concerning λ, including a vertical line indicating the best value of λ

that maximizes the non–parametric profile log–likelihood. In order to fit models with fixed
value of λ, one can use function np.boxcoxmix(). When λ =1 (no transformation), the results
of the proposed approach will be very similar to that of the npmlreg function alldist().
However, the function np.boxcoxmix() is not a copy or extension of the alldist() function;
the implementation is based on directly computing (12)-(15) rather than relying on the output
of the glm() function.
Beside the parameter estimates, the function produces the standard errors of the estimates
and the log–likelihood value. Further, the the Akaike’s Information Criterion (AIC) and
Bayesian Information Criteria (BIC) are calculated to find the best fitting line for the data,
using the expressions

AIC = −2ℓP (λ) + 2 × (p + 2K − 1 + c) (18)

BIC = −2ℓP (λ) + log(n) × (p + 2K − 1 + c) (19)

where ℓP (λ) is the profile log-likelihood function given in (16) which is obtained by substi-
tuting the maximum likelihood estimators of the model parameters (i.e. z = ẑ, π = π̂, β = β̂

and σ = σ̂), and the second part of the AIC and BIC equations computes the number of
parameters estimated in the model. p is the number of regression parameters in β̂, K is the
number of mixture classes, c is the value 1 if the transformation parameter is estimated and
zero otherwise, and n is the number of observations.
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To support diagnostics and model checking, a plot of the disparity with the iteration number
on the x-axis and the mass points on the y-axis, as well as normal Q-Q plots to determine how
well a set of values follow a normal distribution, can be obtained. Furthermore, control charts
of the residuals of the data before and after applying the transformation can be produced to
detect special causes of variation. There are many possible causes of an out–of–control point,
including non-normal data and the number of classes, K.

2.4. Starting point selection and the first cycle

In the first cycle of the algorithm, the model is fitted initially without random effect, given
some starting values β0 and σ0. It remains to choose the starting mass points z0

k and cor-
responding masses π0

k, for which the implementation of boxcoxmix provides two different
methods as outlined below:

• Gauss-Hermite quadrature points (Einbeck and Hinde 2006):

z0
k = β̂0 + tol × s × gk (20)

where β0 is the intercept of the fitted model, tol is a scaling parameter restricted to
the choice 0 ≤ tol ≤ 2, gk are Gauss-Hermite quadrature points, and s is the standard
deviation of residuals defined as,

s =

√√√√ 1
n − p

n∑
i=1

ε̂i
2 (21)

where n − p is the degrees of freedom for ε̂i, n is the sample size, p represents the
number of parameters used to fit the model y

(λ)
i = xT

i β + εi and ε̂i is the difference
between the observed data of the dependent variable y

(λ)
i and the fitted values ŷi

(λ)(i.e.
ε̂i = y

(λ)
i − ŷi

(λ)).

• Quantile-based version
z0

k = ȳ(λ) + tol × q
(λ)
k (22)

where ȳ(λ) is the mean of the responses y
(λ)
i and q

(λ)
k = k

K − 1
2K are quantiles of the

empirical distribution of y
(λ)
i − ȳ(λ).

(For either case, boxcoxmix provides the functions Kfind.boxcox and tolfind.boxcox() to
identify optimal values of K and tol, respectively.)
From this one obtains the extended linear predictor for the k-th component E(y(λ)

i |z0
k) =

xT
i β + z0

k. Using formula (11) with current parameter estimates, one gets an “initial E-
step" and in the subsequent M-step one obtains the parameter estimates by solving the score
equations. From the resulting estimates of this cycle, one gets an updated value of the weights,
and so on.
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2.5. Generic functions

boxcoxmix supports generic functions such as summary(), print() and plot(). Specifically,
plot() can be applied on the output of np.boxcoxmix(), optim.boxcox(), Kfind.boxcox
and tolfind.boxcox(). The plots to be printed depend on the choice of the argument
plot.opt,

• 1, the disparities with the iteration number against the mass points;

• 2, the fitted values against the response of the untransformed and the transformed data;

• 3, probability plot of residuals of the untransformed against the transformed data;

• 4, individual posterior probabilities;

• 5, control charts of residuals of the untransformed against the transformed data;

• 6, the histograms of residuals of the untransformed against the transformed data;

• 7, plots the specified range of tol against the disparities (works only for the
tolfind.boxcox() function);

• 8, gives the profile likelihood function that summarises information concerning λ (works
only for the optim.boxcox() function);

• 7, plots the specified range of K against the aic or bic values (works only for the
Kfind.boxcox function).

2.6. Application to the strength data

In this section we analyze the strength data from the R library mdscore (da Silva-Júnior,
da Silva, and Ferrari 2014) which is a subsample of the 5 x 2 factorial experiment given by
Ostle and Malone (1954). The objective here is to investigate the effects of the covariates lot
and cut on the impact strength, where lot denotes the lot of the material (I, II, III, IV, V)
and cut denotes the type of specimen cut (Lengthwise, Crosswise). The model presented is
a two-way lot × cut interaction model. For the i–th cut and j–th lot, we have

yij = γi + βj + δij + z, i = 1, 2, j = 1, 2, .., 5, (23)

where γ1 = 0, β1 = 0, δ1,1 = δ1,2 = · · · = δ1,5 = δ2,1 = 0, and z is the random effect with an
unspecified mixing distribution.

Shuster and Miura (1972) considered the Inverse Gaussian distribution as an adequate distri-
bution in modelling strength data. We therefore suggest to fit a number of models including
the Inverse Gaussian model and compare the results below.
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For a fixed value of λ, we fit the model with settings λ = −1, tol = 1.8 and K = 3 (the latter
two choices to be justified below), so the response will be transformed as

y(λ) = (y−1 − 1)/ − 1 = −y−1 + 1.

Using np.boxcoxmix(),

> library(boxcoxmix)
> data(strength, package="mdscore")
> test.inv <- np.boxcoxmix(y ~ cut *lot, data = strength, K = 3,
+ tol = 1.8, start = "gq", lambda = -1,
+ verbose=FALSE)
> test.inv

Call:
np.boxcoxmix(formula = y ~ cut * lot, data = strength, K = 3,

tol = 1.8, lambda = -1, verbose = FALSE, start = "gq")

Coefficients
:

cut Crosswise lot II
-0.41743 -0.13097
lot III lot IV

-0.45223 -0.03384
lot V cut Crosswise:lot II

-0.81609 0.49649
cut Crosswise:lot III cut Crosswise:lot IV

0.18130 0.34043
cut Crosswise:lot V

0.25951

MLE of sigma: 0.06169

Mixture proportions:
MASS1 MASS2 MASS3

0.2309757 0.3024323 0.4665921
-2 log L: -73.7 and AIC = -45.7085

For comparison, we also fit the same model without transformation, using function np.boxcoxmix()
with setting λ = 1, tol = 1.8 and K = 3:
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> test.gauss <- np.boxcoxmix(y ~ cut *lot, data = strength, K = 3,
+ tol = 1.8, start = "gq", lambda = 1,
+ verbose=FALSE)
> test.gauss

Call:
np.boxcoxmix(formula = y ~ cut * lot, data = strength, K = 3,

tol = 1.8, lambda = 1, verbose = FALSE, start = "gq")

Coefficients
:

cut Crosswise lot II
-0.2555 -0.0801
lot III lot IV
-0.2722 -0.2203

lot V cut Crosswise:lot II
-0.5401 0.3322

cut Crosswise:lot III cut Crosswise:lot IV
0.1554 0.4070

cut Crosswise:lot V
0.3535

MLE of sigma: 0.02059

Mixture proportions:
MASS1 MASS2 MASS3

0.3666667 0.4665295 0.1668039
-2 log L: -86.6 and AIC = -58.6193

Using now our grid search method optim.boxcox() that calculates and plots the profile log-
likelihood values for the fitted model (23) against a set of λ values, and locates the MLE λ̂

(see Fig. 1):

> test.optim <- optim.boxcox(y ~ cut*lot, data = strength, K = 3,
+ tol = 1.8, start = "gq", find.in.range = c(-3, 3),
+ s = 60)
> plot(test.optim, 8)

Figure 1 shows that the best value of λ that maximizes the profile log-likelihood is 0.1 which
is close to zero, suggesting that some transformation need to be carried out to make the data
distribution appear more normal.
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Figure 1: A grid search over λ, using K = 3 and tol = 1.8

We also fit the model shown in (23) with an Inverse Gaussian distribution using the npmlreg
function alldist(), using tol = 0.45 and K = 3.

> library(npmlreg)
> inv.gauss <- alldist(y ~ cut*lot, data = strength, k = 3, tol = 0.45,
+ verbose=FALSE, family = "inverse.gaussian")
> inv.gauss

Call: alldist(formula = y ~ cut * lot, family = "inverse.gaussian", data = strength, k = 3, tol = 0.45, verbose = FALSE)

Coefficients:
cut Crosswise lot II

0.36114 -0.32801
lot III lot IV
0.44347 0.08572

lot V cut Crosswise:lot II
2.25158 -0.51105

cut Crosswise:lot III cut Crosswise:lot IV
0.51464 -0.19985

cut Crosswise:lot V MASS1
-0.19233 0.73629

MASS2 MASS3
1.25598 1.95567

Random effect distribution - standard deviation: 0.3965868

Mixture proportions:
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Figure 2: For the strength data, a grid search over tol, using K = 3 and λ = 1

MASS1 MASS2 MASS3
0.1681332 0.5895689 0.2422979
-2 log L: -68

For the starting point selection, the optimal value of tol can be selected prior to this analysis
using a grid search over tol using boxcoxmix function tolfind.boxcox() (see Fig. 2).

> tol.find <- tolfind.boxcox(y ~ cut*lot, data = strength, K = 3,
start = "gq", lambda = 1, find.in.range = c(0, 2), s = 20)

Similarly, the value tol = 0.45 used by alldist() has been selected as the optimal value of
tol using the npmlreg function tolfind().
The Akaike Information Criteria (AIC) defined in (18), is used as a criterion for choosing
amongst the models. The model with the lowest AIC value is considered as the best model.
Table 1 displays summary statistics for the Inverse Gaussian distribution model (Inv.Gauss),
transformed models using λ = −1 and λ̂ = 0.1, and the untransformed model (λ = 1).
The Inverse Gaussian model gives the worst AIC. Better AIC values are given by the trans-
formed model using λ = −1, the Gaussian (λ = 1) and λ̂. The lowest AIC found was for the
transformed model using λ̂ with -68.0224. The parameter estimates of the untransformed and
the Box–Cox–transformed model using λ̂ are broadly in agreement but the latter has better
disparity and AIC values. However, the results from the other models are quite different and
the worst disparity was found for the Inverse Gaussian model. Among the four models, the
one with λ̂ = 0.1 provides the best fit of the data, which does not necessarily support the
model choice taken in Shuster and Miura (1972).
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Inv.Gauss λ = −1 λ̂ = 0.1 λ = 1
γ2 0.3611 -0.4174 -0.2943 -0.2555
β2 -0.3280 -0.1310 -0.0887 -0.0801
β3 0.4435 -0.4522 -0.3175 -0.2722
β4 0.0857 -0.0338 -0.2383 -0.2203
β5 2.2516 -0.8161 -0.6845 -0.5401
δ2,2 -0.5111 0.4965 0.3715 0.3323
δ2,3 0.5146 0.1813 0.1141 0.1554
δ2,4 -0.1999 0.3404 0.4604 0.4070
δ2,5 -0.1923 0.2595 0.3378 0.3536
σ 0.3966 0.06169 0.0207 0.0206

−2 log L -68 -73.70853 -98.02242 -86.61931
AIC -40 -45.7085 -68.02242 -58.6193

Table 1: Comparison of results from original & transformed data, using K = 3.

K λ = −1 λ̂ = 0.1 λ = 1
1 -30.01438 -33.57915 -29.45051
2 -50.10725 -56.71019 -44.64449
3 -45.70853 -70.02242 -58.61931
4 -50.42968 -59.40018 -52.4271
5 -57.4437 -60.17015 -49.17725
6 -64.53892 -51.40021 -44.42724
7 -49.44363 -52.17016 -54.39248

Table 2: Comparison of AIC values



14 The boxcoxmix package

The appropriate number of classes K could be obtained by comparing the AIC from fitting
several mixture models with different numbers of classes K, as illustrated in Table 2.

3. Box-Cox transformation in variance component models

3.1. Variance component model

We now consider the two-level variance component model. An unobserved random effect zi

with upper-level indexed by i = 1 . . . , r, and lower-level indexed by j = 1, . . . , ni,
∑

ni = n

is added to the linear predictor xT
ijβ. The responses yij are independently distributed with

conditional mean function
E(yij |zi) = xT

ijβ + zi (1)

where the distribution of the zi is again unspecified. The conditional probability density
function of yij given zi is given by

f(yij |zi) = ϕ(yij ; xT
ijβ + zi, σ2) = 1√

2πσ2
exp

[
− 1

2σ2 (yij − xT
ijβ − zi)2

]
. (2)

3.2. Extending the Box-Cox Transformation to variance component models

For the two-level variance component model with responses yij , the Box-Cox transformation
(Box and Cox 1964) can be written as

y
(λ)
ij =

{
yλ

ij−1
λ λ ̸= 0,

log yij λ = 0
(3)

for yij > 0, i = 1, ..., r, j = 1, ...., ni, and ∑ni = n. It is assumed that there is a value of λ

for which
y

(λ)
ij |zi ∼ N(xT

ijβ + zi, σ2) (4)

where zi is a random effect with an unspecified mixing distribution g(zi). The likelihood can
now be approximated as (Aitkin et al. 2009)

L(λ, β, σ2, g) =
r∏

i=1

∫  ni∏
j=1

f(yij |zi)

 g(zi)dzi ≈
r∏

i=1

K∑
k=1

πkmik, (5)

where mik = ∏ni
j=1 f(yij |zk). The complete log-likelihood is thus

ℓ∗ = log L∗ =
r∑

i=1

K∑
k=1

[Gik log πk + Gik log mik] (6)

where L∗ = ∏r
i=1

∏K
k=1(πkmik)Gik .
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We apply the expectation-maximization (EM) approach similar as before, with the following
adjustments:
E-step: This is identical to (11), but with fik replaced by mik.
M-step: Using the current wik, the four estimators are now:

β̂ =

 r∑
i=1

ni∑
j=1

xijxT
ij

−1
r∑

i=1

ni∑
j=1

xij

(
y

(λ)
ij −

K∑
k=1

wikẑk

)
,

σ̂2 =
∑r

i=1
∑K

k=1 wik

[∑ni
j=1(y(λ)

ij − xT
ij β̂ − ẑk)2

]
∑r

i=1 ni
,

ẑk =
∑r

i=1 wik

[∑ni
j=1(y(λ)

ij − xT
ij β̂)

]
∑r

i=1 niwik
,

π̂k =
∑r

i=1 wik

r
,

where π̂k is the average posterior probability for component k. Substituting the results into
Equation (5) we get the non-parametric profile likelihood function LP (λ), or its logarithmic
version ℓP (λ) = log(LP (λ)). The non–parametric profile maximum likelihood (NPPML)
estimator is therefore given by

λ̂ = arg max
λ

ℓP (λ). (7)

For fixed λ, such variance component models under response transformations are again esti-
mated using the function np.boxcoxmix(). When λ =1 (no transformation), the results of
the proposed approach will be similar to that of the npmlreg function allvc().

3.3. Application to the heights of boys in Oxford data

In order to demonstrate how the optim.boxcox() function may be used effectively, we con-
sider a data set giving the heights of boys in Oxford. The data set is part of the R package
nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2016) and consists of measurements
of age and height for 26 boys, yielding a total of 234 observations. The response variable
height is defined as the height of the boy in (cm), associated with the covariate age that
is the standardized age (dimensionless). The results were obtained by fitting the variance
component model

E(yij |zi) = agej + zi (8)

where zi is boy–specific random effect and agej is the j-th standardized age measurement,
j = 1, . . . , 9, which is equal for all boys for fixed j. A model with K = 6 mass points without
response transformation can be fitted using the np.boxcoxmix() function setting λ = 1,

> data(Oxboys, package="nlme")
> Oxboys$boy <- gl(26,9)
> Oxboys$boy
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Figure 3: For the Oxboys data, estimated mass points versus EM iterations.

[1] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
[19] 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4
[37] 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6
[55] 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8
[73] 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10
[91] 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12

[109] 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14
[127] 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16
[145] 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18
[163] 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20
[181] 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22
[199] 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24
[217] 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26
26 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... 26

> testox <- np.boxcoxmix(height ~ age, groups = Oxboys$boy,
+ data = Oxboys, K = 6, tol = 1, start = "gq",
+ lambda=1, verbose=FALSE)

> plot(testox, 1)

The manual specification of Oxboys$boy <- gl(26,9) is necessary since the second argument
of np.boxcoxmix requires a vector of group labels in order to work correctly.
The function optim.boxcox() can again be used to perform a grid search over λ to obtain
the optimum:

> testo <- optim.boxcox(height ~ age, groups = Oxboys$boy, data = Oxboys,
+ K = 6, tol =1, start = "gq", find.in.range = c( -1.2, 0.1), s=15)
> plot(testo, 8)
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Figure 4: For the Oxboys data, a grid search over λ, with K = 6 and tol = 1.

K = 4 K = 5 K = 6 K = 7
λ̂ = 0.1 λ = 1 λ̂ = −0.51 λ = 1 λ̂ = −0.25 λ = 1 λ̂ = −0.25 λ = 1

β̂ 0.0716 6.5264 0.0034 6.5218 0.0126 6.5245 0.0082 6.5218
SE(β̂) 0.0031 0.2841 0.0001 0.2367 0.0004 0.1918 0.0002 0.2367

σ̂ 0.0310 2.806 0.0012 2.341 0.0035 1.903 0.0023 2.341
−2 log L 1211.8 1212.7 1119.3 1132.8 1026.2 1048.3 1022.3 1132.8

AIC 1229.8 1228.659 1141.324 1152.849 1052.2 1072.27 1052.302 1160.849

Table 3: Comparison of results from original & transformed data, using K = 4, 5, 6 and 7

From Figure 4, it can be seen that the best estimate of λ that maximizes the non-parametric
profile log-likelihood is −0.25, suggesting that some transformation need to be carried out to
make the data distribution more normal. The results before and after applying the response
transformation shown in Table 3 prove that the decision of transforming the response is
reasonable.

As can be seen from Table 3, comparing the Akaike Information Criterion (AIC) values of
the untransformed model fit (λ = 1) and our method using K = 4, 5, 6 and 7, respectively,
showed a slightly better performance of the NPPML approach. In other words, using the
response data after applying the response transformation leads to a better fitting model than
the original data. This gives further support to the decision of using the transformation.

Concerning the choice of K, it is transparent from Table 3 that there is no gain in going from
K = 6 to K = 7 as the AIC values in fact increase when doing so. There is a consistent
improvement, however, when increasing the number of mass points from K = 4 over K = 5
to K = 6, and it is also clear from Figure 3 that the six estimated mass points are distinct
and identifiable. For the untransformed model, Aitkin et al. (2009) recommend the use of
K = 8 mass points.
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4. Discussion

We have introduced a new R package, boxcoxmix, that identifies the appropriate power trans-
formation for achieving normality of the response distribution in random effect models. To
the best of our knowledge, there is no other widely available statistical package that has
implemented the Box-Cox power transformation of the linear mixed effects model with an
unspecified random effect distribution. boxcoxmix is able to fit random effect and variance
component models, and estimates the transformation and regression parameters simultane-
ously through its main function optim.boxcox(). This function operates similarly to the
existing R function boxcox(), by creating a profile likelihood and carrying out a grid search
over the transformation parameter λ. It is noted that, just as in boxcox(), this procedure
cannot make use of built–in R optimization routines such as optim() or optimize() since
the profile likelihood itself depends on estimated parameters, estimation of which involves a
full EM algorithm.
In addition, boxcoxmix also can be used to fit models with fixed value of λ using function
np.boxcoxmix(), and to perform a grid search over tol using the function tolfind.boxcox()
to identify optimal starting values for the mass points. Our package provides some further
diagnostic tools, such as a QQ–plot and a control chart of residuals, which help validating
the need for transformation.
In this paper we have shown how boxcoxmix can successfully fit models through response
transformation rather than adjustment of the response distribution. The examples have
demonstrated that the boxcoxmix function optim.boxcox() works well in finding the
model with maximum likelihood. All transformed models using λ̂ that were obtained by
the optim.boxcox() function gave substantially better fits than the untransformed model,
when considering the AIC criterion or the disparity (−2 log L). Also, in all considered
scenarios, the estimated value of λ̂ was quite far away from the value λ = 1. However, it
should be added that it is not possible to report a simple likelihood–based standard error
for λ̂ as in R function boxcox(), the reason being that the likelihood in the considered
model class is highly non–concave, as visible for instance from Fig. 1. Hence, when faced
with the decision of whether or not needing to transform the response, not only the value
of λ̂ but also relevant model selection criteria such as AIC should be taken into account.
It is then essential that these are always based on likelihoods which are reported on the
original response scale, as in models (6) and (7) — of course, this is the case for the values
−2 log L and AIC provided in our summary output. The experimental results verify the
accuracy and the efficiency of the boxcoxmix package, which is available from the Compre-
hensive R Archive Network (CRAN) at https://cran.r-project.org/package=boxcoxmix.
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